Perpustakaan Universitas Amikom Purwokerto

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Analisis Sentimen Review Komentar Pada Aplikasi Gojek Disitus Google Play Dengan Menggunakan Metode Support Vector Machine (SVM) Dan Particle Swarm Optimization (PSO)

Skripsi

Analisis Sentimen Review Komentar Pada Aplikasi Gojek Disitus Google Play Dengan Menggunakan Metode Support Vector Machine (SVM) Dan Particle Swarm Optimization (PSO)

Gilang Kusumawardhana - Nama Orang;

RINGKASAN

Pertumbuhan pangsa pasar transportasi online di Indoensia mengalami pertumbuhan sangat besar dari 900 juta US$ pada tahun 2015 dan di tahun 2018 mencapai angka 3,8 miliar US$ berdasarkan Google & TAMASEK 2018. Gojek adalah salah satu layanan transportasi online populer di Indonesia. Pada situs Google Play pada akhir September 2019, Gojek tercatat telah di download sebanyak lebih dari 50 juta kali dan memiliki rating 4,5 dengan 2.753.175 komentar. Sedangkan Grab, pesaing terberat Gojek memiliki statistik yang lebih bagus dengan lebih dari 100 juta kali di download dan memiliki rating 4,7 dengan 4.692.497 komentar. Komentar tersebut beragam dari positif sampai negatif. Dengan melakukan analisa terhadap komentar, perusahaan dapat mengerti kekurangan dari aplikasi tersebut dan harapan dari parapenggunanya. Tujuan dilakukannya penelitian ini untuk melakukan analisis sentimen dengan menggunakan data ulasan yang terdapat pada situs google play guna mengetahui hal yang sering diulas oleh para penggunanya dan hasilnya dapat digunakan untuk evaluasi dan perbaikan oleh pihak Gojek untuk meningkatkan kualtias pelayanan. Dengan menggunakan metode klasifikasi Support Vector Machine dan Particle Swarm Optimization untuk mengklasifikasikan ulasan kedalam kelas sentimen positif dan negatif. Kemudian informasi yang didapat divisualisasikan dengan menggunakan chart. Hasil dari analisis menggunakan Support Vector Machine dan Particle Swarm Optimization menghasilkan akurasi terbaik 73,40%, meningkat 8,8% sebelum menggunakan Particle Swarm Optimization yaitu 64,60%. Hasil ulasan positif yang paling sering diulas adalah ”gopay”, sedangkan ulasan negatif yang paling sering diulas adalah “driver”.


Kata Kunci: Analisis Sentimen, Particle Swarm Optimization, Support Vector Machine, Text Mining.








ABSTRACT

The growth of online transportation market share in Indonesia experienced a huge growth of 900 million US $ in 2015 and in 2018 it reached 3.8 billion US $ based on Google & TAMASEK 2018. Gojek is one of the most popular online transportation services in Indonesia. On the Google Play site at the end of September 2019, Gojek was recorded to have been downloaded more than 50 million times and has a rating of 4.5 with 2,753,175 comments. While Grab, Gojek's toughest competitor has better statistics with more than 100 million downloads and has a rating of 4.7 with 4,692,497 comments. These comments range from positive to negative. By analyzing comments, the company can understand the shortcomings of the application and the expectations of its users. The purpose of this research is to do sentiment analysis using review data on the google play site to find out what is often reviewed by users and the results can be used for evaluation by Gojek to improve the quality of service. By using the classification method Support Vector Machine and Particle Swarm Optimization to classify reviews into positive and negative sentiment classes. Then the information obtained is visualized using a chart. The results of the analysis using Support Vector Machine and Particle Swarm Optimization produce the best accuracy of 73.40%, an increase of 8.8% before using Particle Swarm Optimization which is 64.60%. The most frequently reviewed positive reviews are "gopay", while the most frequently reviewed negative reviews are "drivers".

Keywords: Particle Swarm Optimization, Sentiment Analysis, Support Vector Machine, Text Mining.


Ketersediaan
SI1577SI 1577 KUS aUPT. PERPUSTAKAAN PUSATTersedia - Repair
Informasi Detail
Judul Seri
-
No. Panggil
SI 1577 KUS a
Penerbit
Purwokerto : Universitas Amikom Purwokerto., 2020
Deskripsi Fisik
xvii, 86 hlm.; 28 cm
Bahasa
Indonesia
ISBN/ISSN
15.12.0167
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Maret 2020
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Gilang Kusumawardhana
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

Perpustakaan Universitas Amikom Purwokerto
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

https://perpustakaan.amikompurwokerto.ac.id/

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik